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ABSTRACT

The �eld of autonomous robotics is growing at a rapid rate. The trend to use increasingly more sensors in

vehicles is driven both by legislation and consumer demands for higher safety and reliable service. Nowa-

days, robots are found everywhere, ranging from homes, hospitals to industries, and military operations.

Autonomous robots are developed to be robust enough to work beside humans and to carry out jobs ef-

�ciently. Humans have a natural sense of understanding of the physical forces acting around them like

gravity, sense of motion, etc. which are not taught explicitly but are developed naturally. However, this is

not the case with robots. To make the robot fully autonomous and competent to work with humans, the

robot must be able to perceive the situation and devise a plan for smooth operation, considering all the

adversities that may occur while carrying out the tasks. In this thesis, we present an autonomous mobile

robot platform that delivers the package within the VNIT campus without any human intercommunica-

tion. From an initial user-supplied geographic target location, the system plans an optimized path and

autonomously navigates through it. The entire pipeline of an autonomous robot working in outdoor envi-

ronments is explained in detail in this thesis. We have addressed the problem of semantic segmentation for

road and obstacle detection. The common networks used in the literature are reported, along with some

motivation for each of them. A general requirement for autonomous navigation is the availability of a high-

de�nition map. The di�erent layers of maps are discussed and a map of the VNIT campus with required

details is constructed. The issue of robust localization and sensor fusion is explained in detail in this thesis.

The problem of the need of 360-degree vision to the autonomous vehicles is also discussed. Catadioptric

cameras that output panoramic views images with very large �elds of view. It turns out that the design

of such cameras solves plenty of problems including creating a 3D point cloud and providing preliminary

visual data to the obstacle detection and motion planning. The proposed solution is characterized by an

intricate mixture of optics and geometry as exempli�ed.
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Chapter 1

Introduction

The �eld of autonomous robots is growing rapidly in the world, in terms of both the diversity of emerging

applications and the levels of interest among traditional players in the automotive, truck, public transporta-

tion, industrial, and military communities. Autonomous robotic systems o�er the potential for signi�cant

enhancements in safety and operational e�ciency. Due to the meteoric growth of e-commerce, developing

faster, more a�ordable and sustainable last-mile deliveries become more important. Many challenges like

reduced capacity, driver shortage, damaged and stolen products, failed delivery attempts, increased tra�c

congestion, etc. can be solved using autonomous robots. An autonomous robot is designed and engineered

to deal with its environment on its own, and work for extended periods of time without human interven-

tion. It must not only carry out its task of delivery properly, but must also consider the various scenarios

changing around it and act accordingly. The robot must make quick decisions even in adverse conditions,

considering the safety of pedestrians around it[1]. The aim of autonomous robots is to work alongside

humans and try to make human life easier.

Currently, many robots are being used in industries [2], homes [3], military applications, disaster man-

agement [4], etc., all around the world. The advancements in robotics has made lives easier for humans in

many aspects and it provides with a safer and more e�cient alternative to perform tasks which are di�cult

or time consuming for humans. Some of the applications of autonomous robots include cleaning robots

like Roomba, delivery robots, autonomous vehicles, and other robots that move freely around a physical

space without being guided by humans [5].

In order to make a robot completely autonomous, the robot must be completely cognizant of its sur-

roundings and must be able to perform actions based on the inputs it receives through various modules

of the system. For the purpose of achieving a state of complete autonomy, the robot must be able to take

information from sensors, perceive the environment, localize itself precisely in the world, and �nally devise

an optimal plan to achieve its goal. These instructions achieved from the modules mentioned above must

be integrated by the robot in real-time and be given to a control node to actually move the system in the

real world. The system pipeline of an autonomous robot is shown in Fig. 1.1.

The accuracy and the proper integration of all the modules is of utmost importance for an autonomous

robot to operate. A fault in any of the module may cause serious repercussions and may even pose a

hazard to humans around it. This thesis aims to implement all the mentioned modules �awlessly in order

to achieve a completely autonomous operation of the robot in outdoor environments.

This thesis is organized as follows :

In Chapter 2, the hardware design criteria with the applicable constraints is depicted. Furthermore, the

hardware structure including the cyberphysical architecture of the robot is described. The schematic of the

power system as well as the renderings of CAD models are illustrated.

Maps are an integral part of an autonomous operation pipeline. Delivery robots need an accurate map

suitable for accurate localization, navigation and planning. Furthermore, these maps have to be able to

incorporate and respond to the changes in the environment. The standard maps like Google Maps, used

by humans to navigate the world cannot be used for the purpose of navigation of an autonomous robot.

Chapter 3 illustrates the construction of specialized maps for the purpose of autonomous navigation.

Chapter 4 describes the problem of state estimation and localization of a robot in detail. In order to

navigate accurately around the world, the robot must know its location in the world and the map exactly.

A robot can move smoothly only if it is properly localized. An inaccurate localization may cause the

robot to vary o� the roads or behave erroneously which are serious issues when the robot is completely

autonomous.
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Figure 1.1: System Pipeline

The planning module is the backbone of an autonomous driving pipeline. A planner is responsible for

�nding optimal paths in the map for the robot to move and generating e�cient trajectories and velocity

pro�le for the robot to move locally in the presence of static/dynamic obstacles, obey lane rules, prioritize

safety of humans, etc. Chapter 5 describes the hierarchical planning structure adopted for the autonomous

driving pipeline and the implementation details of mission planner and local planner.

Chapter 6 addresses the problem of semantic segmentation for road and obstacle detection. This prob-

lem involves separating sets of pixels from an image where each separate set has some common attributes.

Due to the complexity of the task and the availability of large datasets (with images and corresponding la-

bels), most modern techniques use Supervised Deep Learning. Thus, some of the common networks used in

the literature are described, along with some motivation for each of them. Following this, implementation

and results of road segmentation are given.

Chapter 7 addresses �rst in great depth the problem of the need of 360-degree vision to the autonomous

vehicles, designing new solutions including catadioptric cameras that output panoramic views of the scene,

i.e., images with very large �elds of view. It turns out that the design of such cameras solves plenty of

problems including creating a 3D point cloud and providing preliminary visual data to the obstacle detection

and motion planning. The proposed solution is characterized by an intricate mixture of optics and geometry

as exempli�ed in the second and third sections of the Chapter 7.

Chapter 8 describes the process of intrinsic and extrinsic calibration of the camera-Lidar system.

2



Chapter 2

Hardware Design

2.1 Overview
The robot is designed to operate as an autonomous mobile robot platform for di�erent applications like

in industrial areas for transportation, in hospitals for carrying food and medicines, in unmanned missions

and also for security purposes. Our aim is to develop an autonomous delivery mobile robot that can deliver

a package autonomously from A to B within the VNIT campus. In this chapter, the design criteria and

system architecture are described.

2.2 Design Criteria
There were �ve major constraints in hardware design. These are outlined below:

1. Modularity: In order to easily add units or parts to the robot, the robot platform has to be modular.

These units or parts may be additional navigation sensors, room for payload, extra on-board power,

or various devices for e�ective human-machine interface.

2. Low-cost Production: Even though mobile robots are available in the market, they tend to be expen-

sive, thus increasing research and development costs. Further, the use of a ready-made robot will

increase the cost of production even more in case of mass volume production.

3. Truncated Construction: In the prototyping phase, the construction is kept simple and truncated in

order to use minimal resources and to focus on designated functionality.

4. Suitability of Environmental Conditions: Robot is planned to be used in outdoor environments, which

means that the robot has to move on the roads and be able to pass over small obstacles. Additionally,

electronic equipment on the robot must be protected.

5. Originality: To contribute to scienti�c research and development, the robot has to be di�erent and

new.

The hardware and software structure of the robot has been designed by taking into consideration the above

criteria.

2.3 Hardware Structure

2.3.1 Hardware Overview
The hardware structure of the robot was made by considering the design requirements. Fig. 2.1 shows the

anatomy of the robot. Green lines symbolize signal and communication connections, while red and orange

lines are main power connections and blue lines are connections between motors and motor drivers. In

this section, every part of the robot is described below according to the design progress.

3



MAINBOARD
(Nvidia Jetson TX1)

CONTROL BOARD
(Arduino Mega)

MOTOR DRIVER 
(L298N)
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PWM

UART

DXL Protocol 1.0

PWM

Figure 2.1: Cyberphysical Architecture of the Robot

2.3.2 Driving System
Firstly, the driving system was designed for the robot. The driving structure is made up of the chassis of

the robot, geared motor, Dynamixel smart servo motor, and motor driver. Pre-built chassis was used to

accelerate the design and implementation steps. Chassis consists of an aluminum alloy skeleton, spring

suspension, gearbox, and Ackerman steering mechanism. It was feasible to turn the available driving shaft

by adding a gear to the chassis’ gearbox. The 300 rpm Johnson geared motor is placed with the 1:1 gear

ratio on the custom made motor mount to drive the shaft. Similarly, the steering mechanism is operated

by the MX-28 Dynamixel Smart servo motor.

2.3.3 Power System
The power system was designed according to the requirements of the drive system. The Power system has

three parts. These parts are battery pack, power board, and charger. It has two Lithium Polymer (LiPo)

battery packs to power its system (6s and 3s). LiPo batteries have higher capacity compared to other battery

types in the same size and weight. But LiPo batteries have safety issues. For this reason, LiPo batteries have

to be monitored while charging and discharging. The 5V bus is added to the system to power the auxiliaries

such as sensors and motor drivers. The battery management system monitors battery status by measuring

battery voltages, battery temperatures, and the current which is drawn from the battery pack. The power

board MCU in LiPo charger cuts the power in the event of a dangerous situation, such as overvoltage or

short-circuit, while charging or discharging batteries. The power panel is provided on the side of the robot

to place ON/OFF switches and shifting between charging/discharging modes. The power system schematic

of the robot is as given in the Fig. 2.4.

2.3.4 Controller and driver boards
The total three controllers and driver boards mounted on the robot are given as follows.

1. Mainboard (Nvidia Jetson TX1): Mainboard is the brain of the robot. Nvidia Jetson TX1 is used

for higher-level control. ROS is used for communication between the various modules. It’s Nvidia

Maxwell GPU (256 CUDA cores) enables fast inference times for deep neural networks. It runs all

other processes like the global planning algorithm, the local planning algorithm, control algorithm,

and so on. Further stages of the work, control methods and sensor fusion algorithms will be imple-

mented on the mainboard.

2. Control board (Arduino Mega): Arduino Mega is used for lower-level control. It controls both the

motors (main drive and steering), and handles all the sensors. It communicates with the main pro-

cessor (Nvidia Jetson TX1) through rosserial to get commands for the motors and to publish sensor

data.

4



3. DC motor driver (L298): The L298 is an integrated monolithic circuit in a 15-lead Multiwatt and

PowerSO20 packages. It is a high voltage, high current dual full-bridge driver designed to accept

standard TTL logic levels and drive inductive loads such as relays, solenoids, DC and stepping motors.

Two enable inputs are provided to enable or disable the device independently of the input signals.

The emitters of the lower transistors of each bridge are connected and the corresponding external

terminal can be used for the connection of an external sensing resistor. An additional supply input

is provided so that the logic works at a lower voltage. The Johnsons geared DC motor is driven by

this board.

2.3.5 Sensors
The sensors used in the robot are as follows:

1. Orbecc Astra Depth Camera: RGBD camera mounted to get front view image and front 3D depth map

for perception and planning. It has a range of 8 meters for the 3D depth map. Useful for localization

(using visual odometry) and for identifying obstacles.

2. YDLIDAR X4: Laser range �nder which gives a 2D (planar) 360 degrees depth map, used for percep-

tion and planning. It has a 10 meters scanning range. Useful for localization of robot and identifying

obstacles.

3. SparkFun IMU Breakout MPU9250: An inertial measurement unit (IMU). It consists of a 3-axis ac-

celerometer, 3-axis gyroscope, and a 3-axis magnetometer. Useful for localization of robot.

4. SHARP IR Sensor: A distance measuring sensor, to be used as the last line of defense against collisions.

It has a range of 4-30 cm.

5. Neo-M8N GPS Module: Gives global position (latitude, longitude, and altitude) useful for global

planning. The used Neo-M8N GPS Module provides 167 dBm navigation sensitivity and supports all

satellite augmentation systems.

The connection schematic circuit diagram of the non optical sensors (except depth camera and LiDAR)

is given in Fig. 2.5.

2.3.6 Level Design
The hardware design of the robot is performed at three levels. As seen from Fig. 2.1, there are too many

parts on the robot, and one of the design criteria is modularity. These levels are as follows:

1. Body level (Fig. 2.2 b): This level consists of robot chassis, motors, batteries, temperature sensors,

and control board. Parts in the body level are stationary and unique to the robot platform.

2. Control unit level (Fig. 2.3 b): Powerboard, mainboard, 5V DC bus, motor driver board, and distance

sensors are placed at this level. This level is detachable, so that changes can be made. Control unit

level can be used on any other platform, as long as the motor driver and the battery are �tted.

3. Rooftop level (Fig. 2.3 c): This level is designed for optical sensors. The camera and LiDAR is placed

in this level to ensure no blockage in the range. In later stages of this work, additional navigation

components and application-speci�c equipment can be added to this level.

2.4 Conclusion
In conclusion, the robot which is seen in Fig. 2.6 is designed and built according to design criteria and open

�eld tests are started. The environmental considerations are fully met and a robust structure has been

developed. The robot weighs about 5kg and has a payload capacity of 2kg.
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Gear Box

Ackerman Steering Mechanism

1:1 Gear Ratio

Custom Motor Mounts

LiPO Batteries

MX-28 Dynamixel Motor

Johnson 300 RPM Geared Motor

(b)

(a)

(c)

Figure 2.2: (a) Pre-built chassis of 1:10 scaled RC car, (b) Mounted motors and LiPO batteries, (c) Aluminium

plate covering frame for stage 1.

Power Panel

Nvidia Jetson TX1

LIDAR and Camera Mounts YDLIDAR X4

Orbecc Astra 
Depth Camera

Sharp IR Sensor

L298N Motor Driver

Arduino Mega

(b)

(a)

(c)

Figure 2.3: (a) Power panel mounted on the frame, (b) LIDAR and Camera mounts, (c) Final version of the

Robot
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Figure 2.4: Power diagram of the robot

Figure 2.5: Connection schematic circuit diagram of the sensors.
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(a)

(b)

Figure 2.6: (a) The �nal hardware of the Autonomous delivery robot, (b) The rendered images of respective

CAD models.
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Chapter 3

Building and Managing Maps for Autonomous Operation

3.1 Overview
One of the major aspects for the navigation of autonomous robots in outdoor environments is the availabil-

ity of a specialized high-de�nition (HD) maps. Many web map services like Google Maps in existence are

designed speci�cally for the purpose of humans to navigate the world. However, such maps o�er a location

resolution of up to a few meters which cannot be used for the purpose of navigating an autonomous robot

due to safety reasons, errors, lack of details and information, etc. HD-maps also known as ADAS maps or

Vector maps are generally used for autonomous navigation applications. Some bene�ts of HD-maps are :

1. High accuracy of object locations, upto 10cm.

2. Consist of multiple layers of information about the lanes, which way they travel, road intersections,

curbs, 3D point cloud of the environment, etc.

Using the information in the HD-maps, the robot can localize itself in the map and plan a path for navigat-

ing around the environment. However, existence of a map prior to starting of the operation is not always

necessary. Another way of solving this problem of localization and mapping is through SLAM (Simultane-

ous Localization and Mapping) [6]. The purpose of SLAM is to generate a map and using the information

in the map to simultaneously deduce the location of the robot in the map. The SLAM problem is still an

active �eld of research and is widely used in autonomous robots ranging from indoor robots to outdoor

robots, airborne systems and underwater robots.

However, the implementation of SLAM is not in the scope of this thesis. A pre-built map is generated

for the purpose of autonomous navigation. The visualization of HD-maps classi�ed in layers is represented

in �gure 3.1.

For the purpose of this thesis, we will focus mainly on creating a standard de�nition base map contain-

ing 2D geometric information and the semantic map discussed in Chapter 6.

3.2 Literature Review

3.2.1 Map Layers
A map is useless to a robot if it contains no information about its environment. However, by increasing

the richness of information in an HD-map leads to an increase in the size of the map. As a result, more

processing power would be required to analyze all the information and perform an action based on the

information. Hence, what is included in an HD-map and what isn’t is decided based on the purpose of the

application. For example, a self-driving car would require very high-precision and a detailed map, as it has

to take into consideration a lot of factors like the safety of pedestrians, staying in lane, follow tra�c rules,

etc.

The di�erent map layers in an HD-map as mentioned [8], [7] are:

• Standard De�nition Map Layer

• Geometric Map Layer

• Semantic Map Layer

• Map Priors Layer
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Figure 3.1: HD-map Layers, Source:[7]

Standard De�nition Map Layer

At the foundation of our map layer is the standard de�nition map layer. This represents all of the road

segments and the interconnections, how many lanes there are, what direction they travel in, and the entire

network of roads. It helps the robot to understand the basic attributes of the environment it is navigating

in. Although an SD-map contains the basic information about the roads and their basic details, it is not

su�cient to smoothly navigate a robot autonomously. The SD-map is used as a base for the other map

layers and is used to perform global path-planning for the robot.

The SD-map of VNIT campus containing the information about lanes, the direction of the vectors,

information about curbs, etc. was mapped using OpenStreetMap(OSM) [9]. It is an editable map database

built and maintained by volunteers and distributed under the Open Data Commons Open Database License.

The map created for this project is shown in Figure 3.2

Geometric Map Layer

The geometric map layer contains 3D information of the world. This information is organized e�ciently

to support precise calculations. The 3D map is constructed by fusing the raw information from sensors like

Lidar, depth camera, IMU readings, GPS readings, etc. The 3D point cloud achieved is then post-processed

to produce the corresponding objects in the geometric map. During real-time processing, the geometric

layer is used to access the point cloud information.

However, the sensors used to construct this layer require high precision and good resolution, hence are

expensive. Our pipeline uses the information obtained from standard de�nition maps to localize the robot

and for path planning.

Semantic Map Layer

The semantic map layer builds on the geometric map layer by adding semantic objects. Semantic objects

include 2D and 3D objects found in the surroundings such as intersections, lanes, tra�c signs, etc. For this

project, we have a well-segmented road robust to various lighting conditions as explained in Chapter 6.
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Figure 3.2: Map of VNIT campus

Map Priors Layer

The map priors layer contains derived information about dynamic elements. Information here can pertain

to both semantic and geometric parts of the map. These priors are used by the prediction and planning

systems to determine the behaviour of the objects like tra�c lights, the time to spend in a state, etc. and

act accordingly. For the case of this project, we are assuming an ideal scenario without taking into consid-

eration the various complexities involved while driving.

3.3 Implementation
An SD map of VNIT is generated using the software JOSM as shown in Figure 3.2 containing the features

such as the lanes, their direction, curbs, etc. One of the core elements of the OSM data model are the

nodes. Nodes are characterized in the data with latitude, longitude and a unique node-id. Some nodes

can be assigned special tags in the form of a key-value pair to describe some physical features in the

map like building, road, highway, etc. These tagged nodes are used as reference for planning the path to

speci�c locations in the map. The tagged nodes are added in the map manually and the remaining nodes

are populated automatically through the JOSM software. The data from the OSM is downloaded in ’.xml’

format.

To visualize the osm data, we need a visualizer which can interpret the data in the ’.xml’ format and

display the map accordingly with the help of markers. Using the open-source ROS node osm_cartography
from the package open_street_map, the map can be visualized in the visualizer rviz (rviz is a 3D visual-

izer for the Robot Operating System (ROS) framework). Simply visualizing the map is not enough. The

map is further used by the localization and path planning algorithms and hence its accuracy is of utmost

importance.
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Chapter 4

State Estimation and Localization

4.1 Overview
Localization is the method by which we estimate the state of a robot within the world. In order to be fully

functional, a mobile robot must be capable of navigating safely through an unknown environment while

simultaneously carrying out the task it has been designed for. For the purpose of autonomous navigation,

the robot has to know where it is in the real world with respect to the map, either provided initially or built

simultaneously. However, the robot cannot completely rely on the sensors for accurate localization due to

the errors inherent in the sensors. For example, a GPS (Global Positioning System) has an error magnitude

in metres, an IMU (Inertial Measurement Unit) readings drift over time and its errors accumulate. Hence,

such sensors cannot be trusted to give accurate information about the states of the robot. However, by

combining the information obtained by various sensors and using probabilistic �lters to reduce the errors

due to the sensor readings, a better estimate of the states can be obtained. Based on the prior information

about the state of the robot, the robot can estimate the current state and localize itself accordingly. The

position and orientation can be considered as the state of the robot. An inaccurate localization can lead

to system failure, erratic behaviour of the robot and could cause safety hazards to the people around it.

Hence, it is of utmost importance to accurately localize the robot in the environment and reduce the errors

accumulated due to faulty sensors.

4.2 Literature Review
The problem of localization can be approached by two methods [10]:

1. Map based Localization - Map is available prior to the process of localization

2. Simultaneous Localization and Mapping - The pose of a robot and the map of the environment are

estimated at the same time.

For this project, a map based localization approach is adopted.

Generally sensors like a GPS or GNSS are used to estimate the position in the world using the method

of trilateration. However, a GPS may have an error from 1 - 10 metres. The errors may be attributed to a

number of errors like :

1. Satellite Geometry

2. Satellite Orbits

3. Multipath E�ect

4. Atmospheric E�ects

5. Clock Inaccuracies and Rounding Errors

For the application of an autonomous robot, such errors are not sustainable. Similarly, other sensors at-

tached to the robot like an IMU sensor, Lidar, wheel encoders, vision sensors, etc. give certain information

about the states of the robot either directly or indirectly. Every sensor consist of some uncertainty or errors.

Accumulation of such errors may cause the robot to behave in an aberrant manner and could cause extreme
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fatalities while operating alongside humans or deviate from its desired path. Hence, due to the uncertainty

in readings, it is impossible to accurately calculate the state of the robot using a deterministic algorithm.

However, if the information obtained by all the sensors is fused together and using a stochastic approach,

a better estimation of the states could be achieved. This is known as sensor fusion. Sensor fusion can be

de�ned as the combination of sensory data or data derived from disparate sources such that the resulting

information has less uncertainty than would be possible when these sources were used individually.

To estimate the states of the robot and reduce the uncertainty in measurements accumulated by the

sensors, probabilistic �lters are used. Some of the common probabilistic �lters used for localization are :

1. Bayes Filter [11]

2. Kalman Filter [12]

3. Extended Kalman Filter (EKF) [13]

4. Error State EKF (ES-EKF) [14]

5. Unscented Kalman Filter (UKF) [15]

4.2.1 Probabilistic Estimators
Kalman Filter

Kalman Filter is one of the most widely used probabilistic estimator algorithm. It can be used in all the �elds

where there is an uncertainty in determining the state of a dynamical system. Using a Kalman �lter, an

educated guess can be made about the state of the system. The Kalman Filter makes use of the ’prediction’

and ’correction’ cycle iteratively to estimate the state of the system. Kalman �lters are ideal for systems

which are continuously changing. They have the advantage that they are light on memory as they don’t

need to keep any history other than the previous state, and they are very fast, making them well suited for

real time problems and embedded systems.

A Linear Kalman �lter is considered to be the best linear unbiased �lter. This means, there is no estima-

tor for the state which has a linear state model which is better. It assumes the noise is Gaussian. If the noise

is Gaussian, then the Kalman �lter minimizes the mean squared error of the estimated state parameters.

Two assumptions are taken in the Linear Kalman �lter :

1. Kalman Filter will always work with Gaussian Distribution.

2. Kalman Filter will always work with Linear Functions.

The algorithm for implementing a Kalman �lter is shown in Figure 4.1

Unfortunately, systems in real life rarely show linear characteristics. A Kalman �lter will give accurate

results if the operating range is in the linear zone. Although, quite often, the systems are generally non-

linear or have a small range for linear operation. In such cases, a Kalman �lter may not be the best choice

for an estimator. Hence, even if the Kalman �lter is the best linear �lter, it is not good enough for a non-

linear system. Most real world problems involve non-linear functions and hence we would have to consider

a suitable �lter accordingly. For this case, a common non-linear �lter used is the Extended Kalman Filter

(EKF) [13].

In case of an EKF, the mean of the Gaussian on the non-linear curve is calculated and a number of

derivatives are performed to approximate it using the Taylor’s Theorem. As the function needs to be

linearized, only the �rst derivative of the Taylor’s series is considered. The algorithm of EKF is similar to

the Kalman Filter. Hence for this project EKF is to be implemented for the purpose of localization.

Extended Kalman Filter

EKF is undoubtedly the most widely used non-linear estimator techniques that has been applied in the last

decade. As mentioned by Lawrence Schwartz and Edwin Stear in [17]:

‘It appears that no particular approximate [nonlinear] �lter is consistently better than any other, though

... any nonlinear �lter is better than a strictly linear one.’
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Figure 4.1: Kalman Filter Equations

Source:[16]

EKF is based on linearizing the non-linear functions using the �rst-order Taylor series expansion. Higher

order approaches to non-linear �ltering is also possible which provide better results than EKF, but at the

expense of greater complexity and computational cost. Hence, EKF is generally used as it is a light-weight

non-linear �lter as compared to higher order estimators.

Consider the following general non-linear system:

ẋ = f(x, u, w, t)

y = h(x, v, t)

w ∼ (0, Q)

v ∼ (0, R)

The system equation f(.) and measurement equation h(.) are non-linear functions, where x represents the

states of the system, u is the input, w is the process or motion noise which is a Gaussian function with

zero mean and Q covariance. v is the measurement noise with R covariance. A zero mean white Gaussian

noise model is generally taken to mimic the random processes that occur in nature.

Taylor series is used to linearize the non-linear functions about a nominal control u0, nominal state x0,

nominal output y0 and nominal noise values w0 and v0. These nominal values are generally based on a

priori guesses of what the system might look like. As mentioned in [18], in EKF the Kalman �lter estimate

is used as the nominal state trajectory. We linearize the nonlinear system around the Kalman �lter estimate,

and the Kalman �lter estimate is based on the linearized system. As shown in �gure 4.2, an operating point

‘a’ is selected and a linear approximation is carried out using the �rst-order Taylor series.

ẋ ≈ f(x0, u0, w0, t) +
∂f

∂x
|0(x− x0) +

∂f

∂u
|0(u− u0) +

∂f

∂w
|0(w − w0)

= f(x0, u0, w0, t) +A∆x+B∆u+ L∆w

y ≈ h(x0, v0, t) +
∂f

∂x
|0(x− x0) +

∂f

∂v
|0(v − v0)

= h(x0, v0, t) + C∆x+M∆v

After the linear approximation of the non-linear functions, the Kalman �lter equations can be applied

to get the estimate as mentioned in [18].
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Figure 4.2: EKF Linearization

Source:[19]

Figure 4.3: Linearization Error

Source:[20]

x̂0 = E[x(0)]

P (0) = E[(x− x0)(x− x0)T ]

˙̂x = f(x̂, u, w0, t) +K[y − h(x̂, v0, t)]

K = PCT R̃−1

Ṗ = AP + PAT + Q̃− PCT R̃−1CP

Q̃ = LQLT

R̃ = MRMT

Although the EKF gives better results than a linear Kalman �lter, it has several drawbacks as explained

in [20]:

1. Linearization Error : The di�erence between the linear approximation and the non-linear function

is called linearization error as shown in �gure 4.3. The linearization errors generally depend on:

(a) Non-Linearity of the function

(b) How far away from the operating point the linear approximation is being used

2. Computing Jacobians :

(a) Analytical di�erentiation is prone to human error.

(b) Numerical di�erentiation can be slow and unstable.
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(c) Automatic di�erentiation (e.g., at compile time) can behave unpredictably.

3. For highly non-linear functions, the EKF estimate can diverge and become unreliable.

There are several other �lters like the particle �lter, UKF, ES-EKF, etc. which give better performance

than the EKF, but at the cost of higher computational requirements. Hence, there is always a trade-o�

between choosing the �lter with better performance and the computational cost associated with it. As EKF

is light-weight as compared to other �lters and gives su�ciently good enough results, it is widely used as

a suitable probabilistic estimator. Hence, for this project, we are going to use an EKF as the estimator used

for localization.

4.3 Sensor Fusion
Sensor fusion is the method of combining the measurement readings from di�erent sensors attached on the

robot to get a better estimate. As discussed earlier, an autonomous robot cannot depend on the information

provided by one or two sensors to localize itself precisely in the environment. Hence by extracting the

information from multiple sensors and fusing the data using the probabilistic models explained earlier, we

reduce the uncertainty and obtain better results.

The major question that arises is how many sensors are actually essential and how to choose the sen-

sors required? Increasing the number of sensors surely increases the performance, but also increases the

computational cost and also the overall cost of the robot. For the purpose of localization, we need a sensor

to get the global position estimate, a sensor to determine the orientation of the robot and other sensors to

�nd the odometry of the robot. In this project, we are using a GPS for getting the global position update,

an IMU sensor to �nd the orientation, a 360
◦

2D range scanner (YDLIDAR X4) and a depth camera (Orbbec

Astra) for this purpose. The mentioned sensors were chosen for the following reasons [21]:

1. The error dynamics are completely di�erent and uncorrelated.

2. IMU provides smoothing of the GPS readings.

3. GPS provides absolute positioning information, which reduces the IMU drift.

4. The depth camera provides accurate local positioning within known maps.

5. Lidar provides odometry data in places where the camera fails to give output, e.g., in dark conditions,

in presence of direct sunlight on the IR receiver, false loop closure, etc.

4.3.1 Global Positioning
The Global Positioning System(GPS) is a satellite-based navigation system consisting of a network of 24

orbiting satellites around the earth. The GPS is a US owned utility that provides the users with position,

navigation and timing services. In order to obtain the location of a GPS receiver, it uses a process called

trilateration. For the process of trilateration to work, at least four satellites must be visible to the location

on earth. Each satellite transmits information about its position and current time at regular intervals. These

signals, travelling at the speed of light, are intercepted by the GPS receiver, which calculates how far away

each satellite is based on how long it took for the messages to arrive. Figure 4.4 shows the visualization of

the process of trilateration used in a GPS.

For the purpose of an autonomous robot, the GPS plays a crucial role. However, as mentioned before,

due to the errors in GPS readings, it can’t be completely trusted to give accurate results.

4.3.2 Orientation Estimate
For the purpose of determining the orientation of the robot, we use an inertial measurement unit(IMU). An

IMU is generally present in most of the robots and even smartphones. An IMU has wide scope of applica-

tions such as activity tracking, pose estimation, smart-phone applications, gaming, etc. As mentioned in

[23], a basic IMU mainly consists of:
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Figure 4.4: Trilateration

Source:[22]

1. Gyroscope which measures the angular rotation rates about three axes. A gyroscope can be consid-

ered as a spinning disc that maintains a speci�c orientation with respect to the inertial space, thus

providing an orientation reference as shown in �gure 4.5. Due to recent advancements in the �eld of

Microelectromechanical systems(MEMS), the size and cost of a gyroscope have reduced drastically.

However, these systems give noisy readings and the measurements drift over time. The measurement

model of gyroscope can be given as :

ω(t) = ωs(t) + bgyro(t) + ngyro(t)

where, ωs(t) is the angular velocity of the sensor with respect to the reference frame, bgyro(t) is the

gyro bias evolving over time and ngyro(t) is the white Gaussian additive noise term.

Figure 4.5: Gyroscope

Source:[24]

2. Accelerometer which measures the acceleration relative to the gravitational force, also known as

speci�c force. An accelerometer can also be used to measure gravity as a downward force. Integrating

acceleration once reveals an estimate for velocity, and integrating again gives you an estimate for

position. However, due to the integration, even the errors get accumulated and give erroneous results

over time. Hence, this technique of getting the velocity and position estimate using an accelerometer

is not recommended.

3. Some IMUs also contain a magnetometer. It can detect �uctuations in Earth’s magnetic �eld, by mea-

suring the air’s magnetic �ux density at the sensor’s point in space. Through those �uctuations, it

�nds the vector towards Earth’s magnetic North. Using this data it can be fused with the accelerom-

eter or gyroscope readings to get an absolute heading of the robot.

Hence, IMU sensor is one of the most important sensor attached on an autonomous robot. An IMU not

only gives information about the heading of the robot, but also about the acceleration of the robot which

can be fused with other sensors to get an accurate position or velocity estimate.

17



Figure 4.6: Visual Odometry

Source:[25]

4.3.3 Visual Odometry
Odometry is the estimation of the change in the position and orientation over time. The odometry data

received from the GPS, IMU and wheel encoders are frequently subjected to mechanical errors, drift, bias,

slipping and skidding of the wheels, numerical integration errors, etc. Hence, these sensors are supple-

mented with visual sensors or laser based sensors. Due to the advancements in the �eld of computer vision

in the past decade, a visual sensor has become an integral part of every robot. Nowadays, a simple camera

can be used to perform extremely convoluted tasks like object detection, scene understanding, odometry

estimation, etc. and these intricate tasks are performed with very high precision using the computer vision

algorithms being developed today. The RTAB-Map(Real-Time Appearance Based Mapping) is a RGB-D,

Stereo and Lidar Graph-Based SLAM approach based on an incremental appearance-based loop closure

detector. This package is quite robust to provide stable outputs. In this project, the rgbd_odometry node

of the ROS package rtabmap is used which publishes the odom topic used as an input in the estimator.

Visual Odometry makes use of the estimation of the motion of the camera using sequential images

i.e ego-motion. The pipeline for visual odomery is depicted in Figure 4.6. A basic algorithm for visual

odometry can be explained as mentioned in Algorithm1:

Algorithm 1 Visual Odometry Algorithm

1. Capture new frame Ik

2. Extract and match features between Ik-1 and Ik

3. Compute essential matrix(computed from feature correspondence using epipolar constraint)

4. Decompose essential matrix into Rk and tk and form Tk

5. Compute relative scale and rescale tk accordingly

6. Concatenate transformation by computing Ck = Ck−1Tk
7. Repeat from 1

where, Rk is the Rotation matrix, tk is the Translation matrix and Tk is the Transformation matrix.

The advancements in the �eld of computer vision has led to quite accurate means of generating precise

odometry information. These methods of obaining the odometry information help in providing a source to

mitigate the errors caused due to the gps, imu and other sensors prone to noisy readings. Although, visual

odometry is accurate in appropriate lighting conditions, it has several challenges as mentioned in [25]:

1. Robustness to lighting conditions

2. Lack of features / non-overlapping images

3. Without loop closure the estimate still drifts
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Figure 4.7: Visual Odometry

Source:[21]

Hence, in order to make our estimator more robust to the challenges mentioned above, we have opted

to fuse visual odometry with Lidar odometry.

4.3.4 Lidar Odometry
Lidar(Light Detection and Ranging) sensor is one of the most widely used sensor in autonomous robots and

self-driving cars. It has been an enabling technology for autonomous robots to visualize its environment

in 360°and the Lidar provides very accurate range information. The Lidar uses a simple principle of time-

of-�ight to generate the point clouds of the environment. A single channel 2D Lidar consists of a laser

transmitter. A laser pulse is emitted from the transmitter and on collision with an object, it is re�ected back

which is then captured by the receiver. The transmitter-receiver system is mounted on a motor rotating in

360°. The Lidar consists of an inbuilt timer circuit and an encoder to accurately estimate the time-of-�ight

of the laser pulses emitted and re�ected. Using the time-distance equation of time-of-�ight, a point cloud

is generated of the environment. In case of multiple channel Lidars, a 3D point cloud can be generated

containing precise information about the surrounding.

As the Lidars use laser beams for its operation, they are robust to lighting conditions. This provides a

way for autonomous robots to visualize the environment at night or places with low visibility. The high

de�nition maps generated by Lidars are generally used in most of the self-driving cars nowadays. The

Lidars not only provide accurate information about the surroundings, the point clouds can be processed to

provide valuable information like odometry data, dynamic obstacles, occupancy grid generation, etc.

For achieving odometry information from Lidar data, the Iterative Closest Point (ICP) algorithm is most

widely used. This problem of �nding a spatial transformation to align two point clouds is known as the

point cloud registration problem. In the ICP algorithm, one point cloud is �xed as a reference, while the

other point cloud(source) is transformed to best match the reference. For example, suppose a reference

point cloud is returned by the Lidar at time t1 with respect to a co-ordinate frame S. After some time

t2 and forward movement of the robot, another point cloud if returned by the Lidar with respect to a

co-ordinate frame S′. Now, the point set registration problem states that given two point clouds in two

di�erent co-ordinate frames, and with the knowledge that they correspond to the same object in the world,

how to align them such that the relative motion of the robot can be estimated. As shown in Fig. 4.7, if the

correct correspondences are known, the correct relative rotation/translation can be calculated in closed

form.

The problem can be formulated as:

1. Given: two corresponding point sets:

Ps = {x1, ..., xn}
P ′S = {p1, ..., pn}

2. Wanted: translation t and rotation R that minimizes the sum of the squared error:

E(R, t) =
1

Np

∑
i = 1Np‖xi −Rpi − t‖2

where xi and pi are corresponding points.
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The ICP algorithm is explained in Algorithm 2:

Algorithm 2 Iterative Closest Point

1. Get an initial guess for the transformation {ČS′S , ř
S′S}

2. Associate each point in P ′S with the nearest point in PS

3. Solve for optimal transformation {ĈS′S , r̂
S′S}

4. Repeat until convergence

This is an overview of the point set registration problem which is solved using the ICP algorithm to

provide with accurate odometry information. However, the detailed explanation of the algorithm is not in

the scope of this thesis. In this project, the icp_odometry node from the ROS package rtabmap is used to

�nd the odometry from the laser scanner using ICP.

To summarize, by fusing the global position estimate from the GPS, orientation estimates from the IMU

sensor, visual odometry and Lidar odometry, we obtain robust localization of the robot. We make use of the

EKF probabilistic estimator to fuse the data obtained from the various sensors attached on the robot and

to accurately localize the robot in the map and the world. The estimator is robust to comprehend partial

failures of the sensors and give continuous readings, so that the robot does not drift with time.

4.4 Implementation
An Extended Kalman Filter(EKF) was used for the task of localization and sensor fusion. The detailed

information about the sensors used for the localization process has been described in detail in the literature

review. Although, the robot was designed to inculcate the IMU and GPS sensors, it was observed that

the cheap sensors gave highly erroneous measurements unable to be solved by sensor fusion. Hence, in

order to get a relatively better estimate an android phone was attached on the robot to provide the IMU

and GPS readings for testing purpose. The entire pipeline has been implemented in the Robot Operating

System(ROS). The following sensors are being used for state-estimation and localization:

1. android_sensors_driver - For the purpose of getting accurate gps and imu data, an android mo-

bile phone containing the app android_sensors is mounted on the robot. The app publishes the

GPS �xes as sensor_msgs/NavSatFix and the accelerometer/magnetometer/gyroscope data as sen-

sor_msgs/Imu.

2. Orbbec Astra - Astra is a powerful and reliable 3D camera. It is used for obtaining visual odometry

and for semantic segmentation. The technical speci�cations of Astra camera are given in Table 4.1.

Two ROS packages - astra_camera and astra_launch, are needed for running the camera on ROS.

3. YDLIDAR X4 Lidar - YDLIDAR X4 Lidar is a 360-degree two-dimensional laser range scanner (Lidar).

It is used for obtaining the Lidar odometry. A yd_lidar ROS package is available for operating the

Lidar using ROS. The technical speci�cations of the Lidar are given in Table 4.2.

Table 4.1: Speci�cations of Astra RGBD Camera

Sr.No. Speci�cations Technical Details

1. Range 0.6m – 8m

2. FOV 60°H x 49.5°V x 73°D

3. RGB Image Res. 640 x 480 @30fps

4. Depth Image Res. 640 x 480 @30fps

5. Size 165mm x 30mm x 40mm

4.4.1 Simulations
For the purpose of localization, it is important to form a motion model and a measurement model for the

estimator to carry out the prediction and correction cycle. For initial simulations, the following assumptions

are taken:
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Table 4.2: Speci�cations of YDLIDAR X4

Sr.No. Speci�cations Technical Details

1. Range Frequency 5000 Hz

2. Scanning Frequency 6-12 Hz

3. Range 0.12-10 m

4. Scanning angle 0-360°

5. Range resolution

< 0.5 mm (Range < 2 m),

< 1% of actual distance (Range > 2 m)

6. Angle resolution 0.48-0.52°

7. Supply Voltage 4.8-5.2 V

Figure 4.8: Ground Truth

1. The robot to be equipped with a very simple type of Lidar sensor, which returns range and bearing

measurements corresponding to individual landmarks in the environment.

2. The global positions of the landmarks are assumed to be known beforehand.

3. Known data association, that is, which measurement belong to which landmark.

The data for the simulation are taken from [26] The robot motion model receives linear and angular velocity

odometry readings as inputs, and outputs the state (i.e., the 2D pose

[
x y θ

]ᵀ
) of the vehicle. The motion

model is determined as:

xk = xk−1 + T

cosθk−1 0
sinθk−1 0

0 1

 (

[
vk
ωk

]
+Wk)

The measurement model relates the current pose of the robot to the Lidar range and bearing measure-

ments ylk =
[
r φ

]ᵀ
:

ylk =

[ √
(xl − xk − dcosθk)2 + (yl − yk − dsinθk)2

atan2(yl − yk − dsinθk, xl − xk − dcosθk)− θk

]
+ nlk, n

l
k = N(0, R)

xl and yl are the ground truth coordinates of the landmark. d is the known distance between robot center

and laser range�nder (Lidar). The ground truth data of the trajectory is shown in Fig. 4.8 and the simulation

results are shown in Fig. 4.9

By tuning the values of the variances, it was observed that:

1. One of the most important aspects of designing a �lter is determining the input and measurement

noise covariance matrices, as well as the initial state and covariance values.

2. If the sensors are noisy, they will a�ect the performance of the estimator.

3. Hence it is necessary to tune the measurement noise variances in order for the �lter to perform well.

4. Improper tuning leads to noisy output as shown in Fig. 4.10
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Figure 4.9: Simulation Result

Figure 4.10: Noisy Result

4.4.2 Tests
Localization on hardware platform was tested using a ROS package - robot_pose_ekf. A couple of indoor

and outdoor tests were performed with the robot equipped with all the sensors. Based on the tests, certain

conclusions are drawn.

Indoor Test

For indoor testing of state-estimation, the robot was moved along circular trajectories of di�erent radius. As

mentioned in the literature review, in indoor conditions with proper lighting conditions, visual odometry

has been proven to be very accurate. Hence, for the test, the output from visual odometry is assumed as

the ground truth. The results of visual odometry received from rtabmap and the state-estimation received

from robot_pose_ekf are plotted in Fig. 4.11

Figure 4.11: Indoor Circle Test

The following things are observed from the indoor tests:

1. As shown in Fig. 4.11, the visual odometry readings are quite accurate as they depict the circle

accurately along which the robot is moved in the world.

2. The readings obtained from the EKF estimator overlap mostly with the ground truth, thus indicating

accurate results.
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Outdoor Test

For outdoor testing, the robot was traversed along a path in the VNIT campus. The sensor data, visual

odometry, Lidar odometry received from the ICP algorithm and estimator output were noted for the dura-

tion of the test. The results of the test are shown in Fig. 4.12

Figure 4.12: Outdoor Test

The following things are observed from the outdoor test:

1. As shown in Fig. 4.12, in outdoor environment, the data from ICP is not very accurate. This error

may be attributed to the sensor noise and false transforms between the sensor frame and odometry

frame.

2. As the test was carried out in daylight, due to proper lighting conditions, the visual odometry data

is accurate, but is seen to lose some data. Thus, failing to provide continuous readings.

3. However, even if the odometry data from visual odometry and Lidar odometry are not continuous

and accurate, the EKF estimator is robust enough to provide continuous and precise readings.

4.4.3 Conclusion
As shown in the Indoor and Outdoor Tests, the following can be concluded:

1. In indoor environments, visual odometry gives accurate readings and can be used reliably. However,

in the outdoor environments, the visual odometry node tends to fail occasionally, thus providing

erroneous readings.

2. During tests conducted at night, visual odometry node fails completely due to insu�cient inliers and

the estimator must depend on Lidar odometry for accurate information.

3. The robot_pose_ekf package fails to provide readings when there is a discrepancy between the times-

tamps(10 seconds) of the readings from di�erent sensor nodes. This error occurs when two sensor

inputs have timestamps that are not synchronized. As sometimes, the visual odometry fails to give

feedback due to certain conditions, the readings are not continuous and hence the estimator fails in

such cases.

The importance of accurate state-estimation and localization has been inferred from the various tests car-

ried out on the hardware platform. Localization is the base of any autonomous system. Without precise

information about the pose of the robot, it is impossible to function autonomously.
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Chapter 5

Planning Algorithms for Outdoor Environment

5.1 Overview
The planning algorithms decide how the robot will achieve its goal of moving from initial starting point to

the destination in an e�cient way. The "e�cient way" may suggest �nding the shortest path, �nding the

quickest path to reach the goal or �nding the path which utilizes the least energy. These constraints are

considered in the planning algorithm and an output is a path which the robot can traverse satisfying the

required conditions.

Planning at its origin was just a search for a sequence of logical operators or actions that transform an

initial world state into a desired goal state. However, the �eld has �ourished to deal with complications such

as real world uncertainties, multiple bodies, and dynamics. Presently, planning includes many decision-

theoretic ideas such as imperfect state information, Markov decision processes, and game-theoretic equi-

libria. Nowadays major research focus in this �eld is to optimize the process of generating most e�cient

paths and developing algorithms that unite planning and control.

In the context of this project, the planning algorithm needs to decide where the robot should head next.

For this purpose, the algorithm takes inputs from perception and localisation units and takes decisions

based on our developed procedure. There are three main goals the algorithm needs to achieve:

1. Reaching the desired goal state.

2. No collisions with other entities(dynamic or static).

3. Take the best path (shortest or quickest)

5.2 Literature Review
The planning architecture is generally divided into a heirarchical structure as shown in Fig. 5.1

5.2.1 Mission Planner
This is the highest level of optimization problem. In the mission plan, the focus is on map level navigation.

The constraints such as �nding the shortest path or the quickest path are generally of the major concern

here. Other issues such as obstacle avoidance, estimating the time to collision, generating velocity pro�le,

considering the rules of the road etc. are not considered in the mission planner. As mentioned in [27], the

mission plan instead focuses on aspects such as speed limits, road length, tra�c �ow rates, road closures

etc. The mission plan is also referred to as Global Plan, as the goal of the mission plan is to �nd the path

the robot will follow in the global map that we generated prior to the operation as mentioned in Chapter

3.

In terms of optimality, the global planner considers the amount of time or distance taken by the chosen

path to reach the goal Graph based algorithms are used to �nd the path. A graph is a data-structure

consisting of vertices and edges G = f(V,E) as shown in Fig. 5.2

In context to the problem of path planning, the vertices may be considered as nodes in the global map

and and the edges are the road networks joining the vertices. In this sense, a contiguous road network can

be discretely represented in the form of a graph. Many graph searching algorithms have been developed

such as :
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Figure 5.1: Heirarchical Planning Architecture

Source:[27]

Figure 5.2: Graph

Source:[28]

1. Breadth First Search (BFS)

2. Depth First Search (DFS)

3. Djikstra’s Algorithm

4. A-star (A*) Search

5. RRT, etc.

The BFS and DFS algortihms are basic algorithms which can �nd the shortest path between the start posi-

tion and the goal position, but are computationally expensive, not optimal and may get stuck in bug-traps.

One of the major drawbacks to the DFS and BFS algorithms are that they do not use weighted edges and

thus provide non-optimal solutions. However, the A* search algorithms undertakes a heuristic based ap-

proach to �nd the optimal path. For this thesis, the A* algorithm is implemented for �nding the optimal

global path.

A-Star Algorithm

Before diving in the details of the A* algorithm, certain terminologies are important for understanding the

process :
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1. agent - An agent is an entity that perceives the environment and acts upon the environment.

2. state - A state is the con�guration of the agent in the environment.

3. initial state - It is the state where the agent begins its operation.

4. actions - These are the choices that can be performed in a given state.

5. transition model - It is a description of what the state results from performing an action in a state.

6. state space - It is the set of all possible states reachable from the initial state by any sequence of

actions.

Unlike the DFS and BFS algorithms, A* algorithm uses weighted edges which may represent the road

lengths between two nodes in the mission planner case. To increase the e�ciency of the search algorithm,

search heuristic is used. In the context of path planning, a search heuristic is an estimate of the remaining

cost to reach the destination vertex from any given vertex in the graph.

h(v) = ‖t− v‖

However, any heuristic used will not be exact as it would then mean knowing the answer to the problem

already. But using the search heuristic helps to �nd the optimal path faster and prevents getting stuck in

bug-traps.

The A* algorithm is explained in Algorithm 3 [27].

Algorithm 3 A-Star Algorithm

1. open←MinHeap()

2. closed← Set()

3. predecessors← Dict()

4. open.push(s, 0)

5. while !open.isEmpty() do
u, ucost← open.pop()

if isGoal(u) then
return extractPath(u, predecessors)

end
for all v ∈ u.successors() do

if v ∈ closed then
continue

end
uvCost← edgeCost(G, u, v)

if v ∈ open then
if uCost + uvCost + h(v) < open[v] then

open[v]← uCost + uvCost + h(v)

costs[v]← uCost + uvCost

predecessors[v]← u

else
open.push(v, uCost + uvCost)

costs[v]← uCost + uvCost

predecessors[v]← u

end
end

end
closed.add(u)

end

5.3 Global Planning Implementation
For the purpose of this project, A* algorithm was implemented for �nding the global path. As mentioned

in Chapter 3, a map of the VNIT campus was constructed using OSM. The osm map existing in the xml
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�le format, consists all the information about the map like the nodes, traversable paths, road lengths, node

co-ordinates etc.

OSMnx [29] package was used to �nd the nearest nodes with respect to the nodes in the map and to

read the information available in the xml �le of the map. Using the A* algorithm explained previously, the

shortest path was determined for the robot as shown in Fig. 5.3.

Figure 5.3: Global Plan

Based on the road network available in the map, an optimal shortest path is obtained through the A*

algorithm. This path is just the global map the robot will follow. The global plan is given as an input to the

behavioral planner and the local planner. These lower level planners will �gure out how to generate ob-

stacle free optimized paths considering the behavior of other dynamic agents in the surrounding, avoiding

any collision and also providing a smooth motion to the robot.

5.4 Local Planner
The local planner deals with generating an e�cient trajectory and velocity pro�le for the robot to traverse

using the data obtained from other modules of the system. The task of a mission planner or a global plan

was to generate a global plan to reach the goal position from the start position as mentioned in the previous

section. However, it does not account for the various complexities involved in local motion of the robot.

For example, the global plan does not account for generating e�cient local trajectories for the robot to

follow, it also does not include the information of the immediate surrounding in order to avoid collision

with dynamic objects, follow lane, predict the time-to-collision and subsequently avoiding the trajectory

leading to collision, etc. The local planner ensures smooth operation of the robot on a well de�ned, e�cient

trajectory with proper velocity pro�le required for the robot to move freely in the environment without

any aberration. The local planner is one of the most important part of an autonomous robot as it accounts

for the safety of the robot as well as the objects in its surrounding like pedestrians, dynamic vehicles, etc.

Slightest of mistake in the local planner can lead to hazardous e�ects.

5.4.1 Basic Terminologies
Some basic terminologies required before proceeding in this section are mentioned below:

1. Con�guration space: A set of all possible con�gurations of a robot in a given world. It is also called

C-space denoted by C . The space occupied by a robot is denoted by A.

2. Obstacle space: The space which is already occupied by an obstacle at a given instant of time denoted

by O. The Cobs is de�ned as a set of all con�gurations of the robot whose intersection with obstacle

space is not null.

3. Free space: It can be simply de�ned as C/Cobs . That is the space remained by subtracting obstacle

space from con�guration space.

4. Path: A continuous function of con�gurations of robot which will lead the robot to desired state from

initial state.
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5. Query: A pair of initial state (qI) and goal state (qG) of robot provided as input to the planning

algorithm by human or some other algorithm.

5.4.2 Formulation of motion planning problem
The basic motion planning problem is conceptually very simple using C-space ideas. The task is to �nd a

path from qI to qG in Cfree. The entire blob represents C = Cfree ∪Cobs. The motion planning problem

is shown in Fig. 5.4.

Figure 5.4: Motion Plan

• A world W (2D or 3D)

• A semi-algebraic obstacle region O ⊂W in the world.

• A semi-algebraic robot is de�ned in W . It may be a rigid robot A.

• The con�guration space C determined by specifying the set of all possible transformations that can

be applied to the robot. From this, Cobs and Cfree are derived.

• A con�guration, qI ∈ Cfree or the initial con�guration.

• A con�guration qG ∈ Cfree or the goal con�guration.

A complete motion planning algorithm must compute a (continuous) path, τ : [0, 1] ⇒ Cfree, such

that τ(0) = qI and τ(1) = qG, or correctly deduces that such a path does not exist. It was shown that this

problem is PSPACE-hard, which implies NP-hard.

5.4.3 Literature Review
The currently developed classic methods are variations of four general approaches: Roadmap, Cell Decom-

position, Potential �elds, and mathematical programming.

Roadmap approach: In this approach, the free C-space, i.e., the set of feasible motions reduced to, or

mapped onto a network of 1D lines. This approach is also called the Skeleton, or Highway approach. The

search for a solution is limited to the network, and the whole problem becomes a graph-searching problem.

1. Cell Decomposition: In Cell Decomposition (CD) Algorithm, the free C-space is decomposed into a

set of simple cells, and then adjacency relationships are computed among the cells. A collision-free

path is found by �rst identifying the two cells containing the initial state and the goal state and then

connecting them with a sequence of connected cells.

2. Potential �elds: This concept was �rst introduced by Oussama Khatib.In this method, a robot is

treated as a point represented in C-space as a charged particle under the in�uence of an arti�cial

potential �eld U. The potential function can be de�ned over free space as the sum of an Attractive

potential attracting the robot toward the goal con�guration, and a Repulsive potential repelling the

robot away from the obstacles to avoid collisions.

3. The Mathematical programming approach: This represents the requirement of obstacle avoidance

and shortest path with a set of inequalities on the con�guration parameters and an objective function.

Planning problem is formulated then as a mathematical optimization problem that �nds a smooth

curve between the start and goal con�gurations minimizing a certain cost function.
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5.4.4 Planning architecture
The general architecture for planning includes the representation of a pipeline of processing perception

inputs to generate optimal plans of motion. It contains several unit operations which are represented in

the chart. This gives an overall idea of what’s happening inside the processor.

Overall Structure

First let’s see the entire architecture of the robot. See Fig. 5.5

Figure 5.5: Cyber physical architecture of the robot. Showing all the main processes and the names of ROS

topics are mentioned above the arrows to get the intuition of the data transfer. The complete working of

each unit is explained throughout the thesis.

Now Let’s look at planning architecture. See Fig. 5.6.

Figure 5.6: Planning architecture of the robot. The algorithmic details of the above blocks are illustrated in

this section. The ROS topic names are shown above arrows to get intuition of the system data transfer.

Input processing

The inputs to the local planner are :

1. Global planner: A-star based searching algorithm which uses a VNIT map to �nd a path from A to

B in terms of nodes which are basically way-points which are a feet away from each other including

all the turn nodes. The output of the search is the set of way-points which is published on a ROS

topic.
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2. Localisation: A modi�ed EKF is used to fuse the data from VO, IMU and LIDAR based odom to get

a �nal pose of the robot in the real world. The pose is then transformed into di�erent frames as per

requirement. The odometry is published on the ROS topic.

3. Obstacle data: A segmentation map generated by a neural net is processed to get the road contour or

a boundary of a traversable area on the road. This contour is merged with the cropped lidar contour

to get a 360 degree view of the traversable area. The merged contour is published on the ROS topic.

5.4.5 Collision checking and avoidance
Overview

Collision checking

It is one of the fundamental operations in robotic motion planning. This operation can be divided into static

and dynamic collision checking. Static checking refers to checking amounts to testing a single con�guration

for testing spatial overlaps. Dynamic checking needs to answer if all the con�gurations on a path in C-space

are collision free. There are three major methods for dynamic checking as, Feature tracking , bounding

volume and swept volume methods.

A common approach is to sample paths at any �xed, pre-speci�ed resolution and statically test each

sampled con�guration. This approach is not guaranteed to detect collision whenever one occurs, and trying

to increase its accuracy by re�ning the sampling along the entire path results in slow checking. Researchers

have found optimal ways to do this by varying sampling resolution as per the requirements in real time. But

in our case we have used a �xed resolution to avoid excess computations and we have followed a popular

circle based checking method.

Collision avoidance

The purpose of obstacle avoidance algorithms is to avoid collisions with the obstacles.These algorithms deal

with moving the robot based on the feedback of the sensor information. An obstacle avoidance algorithm

is modifying the trajectory of the robot in real time so that the robot can prevent collisions with obstacles

detected on the path.

We can divide the collision avoidance problem into “global” and “local”. The global techniques involve

path planning methods relying on availability of a topological map de�ning the robots work-space and

obstacle space. The entire path from start to goal can be planned, but this method is not suitable for

fast collision avoidance due to its complexity. On the other hand the local greedy approaches of using

pure obstacle avoidance methods are unable to generate an optimal solution. Another problem is that

when using a local approach the robots often get into a local minimum. Because of these shortcomings,

a reactive local approach representing obstacle avoidance cannot be considered as a complete solution

for robot navigation. Due to this reason, we need to combine both obstacle avoidance and path planning

techniques to develop a hybrid system overcoming the cons of each of the methods. In our architecture we

have also used such a combination to avoid obstacles while planning paths recursively.

Circle-Point based checking

Imagine there is a circle C1 with center (x1, y1) and radius D′. Let’s assume a point P1. Imagine there is

a line running between center and P1. The distance from the center point to P1 when P1 is on edge of

circle is D′

So: Any greater distance than D′ and the circle won’t collide with the point. Any less distance than D′

and then collision will happen. The Fig. 5.7 explains it clearly. We have sampled the obstacle contours into

a set of discrete points and we have sampled circles on the global path to check intersection with obstacle

contours.

Safety considerations

Considering the dimensions of the robot, we have calculated a radius of circle for collision checking which

involved an additional cushion along the surroundings of the robot and apart from this the robot is equipped

with three sharpIR sensors which are calibrated for a safe distance measurements if the robot goes too
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Figure 5.7: Collision checking method

close to some obstacle then the emergency stop behaviour is invoked by SharpIR sensors, stopping robot

immediately and replanning the route.

The last layer of safety is the bump sensor. If apart from all the algorithmic and hardware provisions,

the robot still bumps into something then the bump sensor immediately shuts down the whole system to

prevent stalling of actuators and mechanical damage.

5.4.6 Local planning algorithm
Speci�c use case

Considering the environment, motion planning can be either static or dynamic. We say a static environment

when the location of all the obstacles is known priori. Environment is dynamic when we have partial

information about obstacles prior to robot motion. Initially the path planning in a dynamic environment

is done. When the robot follows its path and identi�es new obstacles it updates its local map, and changes

the trajectory of the path if necessary. In our case the environment is dynamic. Also, our robot is supposed

to be travelling along roadsides. On roadsides there might also be some parked vehicles or other static

obstacles which needs to be considered while designing planning algorithms. Other than static obstacles

there can be humans and other moving vehicles. So we need to be quick and accurate in planning our path.

It means that the algo should be computationally e�cient, robust and should have prede�ned emergency

behaviours. This de�nes our use case, now in the next subsection we have mentioned the actual working

of the algorithm.

Designed algorithm

Planner receives the input of obstacle way-points from segmentation contour and Lidar contour. Way-

points are received as input from global planner which is A* based planner searching nodes in a map of

VNIT. If collision is detected then way-points are slided along a line perpendicular to the slope of the line

joining the consecutive way-points or path and the direction of sliding is away from obstacles. The distance

for sliding is �xed and decided by using dimensions of bot and max turning radius. Sliding is operated like

a chain. Every second slide of a way-point is followed by sliding of its immediate next and previous way-

points.The collision checker function and avoiding function operate in recursion. The planner returns a

new set of way-points to avoid the obstacle. This algorithm will surely return a path if it exists otherwise

it reports that a path is not possible. Step-wise algorithm is mentioned in the Fig. 5.8. The Fig. 5.9 shows

an example of how the planner works if sliding to the left slide is not an option.
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Figure 5.8: Planning algorithm block diagram

5.5 Conclusion and Future Work
This thesis explains the hierarchical planning structure and the implementation of A* algorithm to �nd

the shortest path from starting position to the goal in the map along with the local planner responsible

for creating smooth and e�cient trajectory for the robot with collision avoidance. Further research could

be carried out for the optimization of problems related to occupancy grid generation, �nding the time to

collision, generating energy e�cient paths etc.
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Figure 5.9: Planning algorithm working explanation. The hexagon indicates an obstacle. The �gure is

showing a step-wise algorithm when going from the left side of an obstacle is not allowed. The dotted line

indicates the path to be followed and the line with the arrow indicates the global path.
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Chapter 6

Semantic Segmentation for Road and Obstacle Detection

6.1 Overview
Image Segmentation is the partitioning of an input image into multiple segments (sets of pixels). The goal

is to represent the image as something simpler to analyze and more meaningful. As per [30], some of the

subtasks involved in image segmentation are :

• Semantic Segmentation [31]: Each pixel is classi�ed into one of the prede�ned set of classes such

that pixels belonging to the same class belongs to a unique semantic entity in the image. Note that

the semantics (logic) in question depends not only on the data but also the problem being addressed.

• Saliency Detection [32]: Focus on the most important object in a scene.

• Instance Segmentation [33]: Segments multiple instances of the same object in a scene.

• Segmentation in the temporal space [34]: Object tracking requires segmentation in the spatial domain

as well as over time (temporal domain).

• Oversegmentation [35] [36]: Images are divided into extremely small regions to ensure boundary

adherence, at the cost of creating a lot of spurious edges. Region merging techniques are used to

perform image segmentation.

• Color or texture segmentation: Also found to be useful for certain applications.

This work focuses on semantic segmentation because that is su�cient for our purpose of identifying the

road and obstacles in tra�c/road scenes.

Note: Some prior knowledge of Convolutional Neural Networks [37] is required for proper understand-

ing of this chapter.

6.2 Literature Review
Most modern techniques make use of Supervised Deep Learning, majorly involving Convolutional Neural

Networks [37], due to their success in Image Classi�cation tasks. These convolutional networks consist

of sequential application of convolutional �lters, pooling layers and non-linear activation functions. An

example is shown in Figure 6.1. This particular architecture is used for image classi�cation. It is a mapping

(function) between the image and the output class.

However, semantic segmentation is di�erent, and thus modi�cations are required to the architecture.

Particularly, Fully Convolutional Networks (FCN) [38] are used for segmentation. These do not involve

fully connected (dense) layers. Further, output size reduces in conventional CNNs, so it cannot be used for

pixel-level classi�cation. In FCN, an interpolation layer is used which upsamples the intermediate outputs

(called feature maps) to the size of the input image. It is interesting to note that this interpolation is done

using bilinear interpolation and is not learnable. An example is shown in Figure 6.2.

Fully connected networks (conventional deep CNNs like Figure 6.1) used �attening of 2D feature maps

to perform classi�cation. However, �attening results in loss of spatial relation between pixels in the feature

map. FCNs overcome this by avoiding the use of �attening and using upsampling followed by pixel-level
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Figure 6.1: AlexNet: Deep Convolutional Neural Network architecture from [37]

Figure 6.2: Fully Convolutional Network architecture from [39]

classi�cation. However, the issue with FCNs is the loss of sharpness due to intermediate subsampling. This

issue has been addressed using skip connections and other methods.

Another approach is the use of Convolutional Autoencoders [40]. These are traditionally used for

Representation Learning. An autoencoder has 2 parts, encoder and decoder. Encoder encodes the raw

input to a lower dimensional representation, while the decoder attempts to reconstruct the input from the

encoded representation. The decoder’s generative nature can be modi�ed to achieve segmentation tasks.

The major bene�t of these approaches is generation of sharper boundaries without much complication.

Unlike classi�cation approaches, the decoder’s generative nature can learn to generate delicate boundaries

using the extracted features. Another bene�t is that it does not restrict input size. The commonly used

technique for decoding is transposed convolutions (learnable) or unpooling layers. However, a possible

issue with such approaches is over-abstraction of images during the encoding process, i.e. the network

starts memorizing the training images instead of learning �lters that are useful for compression and recon-

struction.

Another technique is the use of skip connections, �rst introduced in [42]. Linear skip connections are

often used to improve gradient �ow for large number of layers. Skip connections are also useful to combine

di�erent levels of abstraction from di�erent layers to produce sharp segmentation output. An example is

shown in Figure 6.3.
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Figure 6.3: U-Net architecture utilizing skip connections from [41]

6.3 Preliminary Experiments
For our early tests, we used U-Net architecture [41] with the Cambridge-driving Labeled Video Database

(CamVid) [43]. The training is done using Adam Optimizer [44] with learning rate 1e-4 minimizing pixel-

wise Cross Entropy Loss. The implementation was done on the PyTorch [45] based fastai [46] framework.

The architecture is shown in Figure 6.3. Some example images and labels are shown in Figure 6.4. The

preliminary results are shown in Figure 6.5.

As seen from the results, the output segmentation is not sharp enough and sometimes cannot segment

obstacles properly. The major issues which led to this are as follows:

• Since the CamVid dataset has only around 700 images, the network is not able to generalize. This

also causes the network to inaccurately segment certain obstacles like a person on a motorcycle as

in Figure 6.5.

• Further, since those images are from urban areas of foreign cities, the network is unable to sharply

segment images from our institute’s campus, which features less structured roads and other features.

• There are too many classes which makes the task more di�cult for the network. This is because the

underlying optimization problem is more di�cult to solve.

Another issue, unrelated to the performance, is the high computational complexity of the model. The

computational complexity hinders the real-time use of the model, since computational power on the robot

will be limited. Thus, for our �nal implementation, we use ENet [47], which is computationally more

e�cient while preserving performance.

6.4 Final Implementation
E-Net architecture (in Figure 6.6 and Table 6.1) is implemented in PyTorch[45]. The code is available at

https://github.com/IvLabs/autonomous-delivery-robot/tree/master/sem_seg_pytorch.

The dataset used was Cityscapes [48], which provides around 25k images having coarse annotations for

road scenes. Some examples are shown in Figure 6.7. In this �nal implementation, only the road is seg-

mented from the image, while assuming anything other than the road to be an obstacle. Further, Dice Loss
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Figure 6.4: Sample images and pixel-level labels from CamVid [43]

[49] is used in combination with the Cross Entropy Loss to improve the segmentation output. Dice Loss is

given by:

DL(p, p̂) = 1− 2pp̂+ 1

p+ p̂+ 1
(6.4.1)

where p ∈ 0, 1 and 0 ≤ p̂ ≤ 1, p is the label and p̂ is the prediction from the network.

Some of the features of this loss function are:

• The fraction
2pp̂+1
p+p̂+1 signi�es the amount of overlap between the label and the predicted segmentation.

It is called the Dice Coe�cient.

• Maximizing the Dice Coe�cient will give maximum overlap. However, we are already minimizing

the Cross Entropy Loss. Thus, we minimize 1 − Dice Coe�cient, which is the same as maximizing

the Dice Coe�cient.

• Further, this loss function performs particularly well in case of unbalanced segment sizes i.e. very

small obstacle segments may a�ect the optimization and it may get stuck in a local minima. Dice

Loss helps to avoid this problem.

• However, the problem with Dice Loss is that the gradients are complicated compared to Cross En-

tropy gradients and have the tendency to explode (too small values of p and p̂ may cause very large

gradients), which makes the training unstable.

Thus, taking note of the advantages and disadvantages of Dice Loss, it is bene�cial to use a combination

of Dice Loss and Cross Entropy Loss. This combination is minimized simultaneously in our implementation

using Adam optimizer with a learning rate of 1e-4.

The design choices of the ENet architecture are detailed in [47]. They are brie�y summarized below:

• The use of Parametrized Recti�ed Linear Units (PReLU) [50] gives an additional learnable parameter

to the non-linear nature of the network. This improves the performance over using standard ReLU

non-linearity.

• In other architectures, decoder is generally an exact mirror of the encoder (w.r.t. architecture). Here,

decoder is much smaller than the encoder. The idea is that encoder will process and �lter the input,

while the decoder simply upsamples and �ne-tunes the encoder output.

• The use of factorizing �lters or asymmetric convolutions [51] i.e. decomposition of n×n convolution

into an n× 1 convolution followed by a 1× n convolution reduces the computational and memory

costs. For example, an asymmetric convolution with n = 5 is similar to a 3× 3 convolution in terms

of computational cost and memory requirements.
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Figure 6.5: Results of U-Net trained with CamVid dataset on VNIT campus images with color map indicating

relation between class and color.

• The use of dilated convolutions [52] gives the network a wide receptive �eld. Thus, dilated convolu-

tions are used instead of normal convolutions.

The result of these design choices is the reduction in memory and computational requirements while

ensuring good performance. The results on some images from the VNIT campus are shown in Figure 6.8.

Note that these images are captured using a handheld smartphone camera.

6.4.1 Hardware Implementation
Since this semantic segmentation model is to be deployed on the robot, it is essential to use a small, portable

computer. Further, it should have enough computational power to process the images in real-time while

also running the other algorithms (global and local path planning, localization, etc.) in parallel. Several such

low-cost single-board computers are available in the market like the Raspberry Pi, ODroid, etc. However,

they all lack a graphic processing unit (GPU) which severely limits the performance of the model while

additionally introducing latency in the entire system.

Thus, the choice of the onboard computer is limited to devices with a dedicated GPU. Nvidia has 2

products namely, Jetson TX1 and TX2 which have a dedicated GPU while maintaining a portable form

factor. Thus, the Nvidia Jetson TX1 (since it’s the cheaper option) is used as the onboard computer. The

important hardware speci�cations of the Nvidia Jetson are as follows:

• Quad-Core ARM Cortex A57 CPU

• 256-Core Nvidia Maxwell GPU
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Figure 6.6: (a) ENet initial block. MaxPooling is performed using non-overlapping 2 × 2 windows, and the

convolution has 13 �lters, which sums up to 16 feature maps after concatenation. (b) ENet bottleneck mod-

ule. conv is either a regular, dilated or deconvolution with 3× 3 �lters, or a 5× 5 convolution decomposed

into 2 asymmetric ones. Source: [47]

Figure 6.7: Sample images and pixel-level labels from Cityscapes [48]

• 4 GB LPDDR4 memory (RAM and GPU VRAM is shared)

• 16 GB eMMC storage (with SD Card expansion slot)

• < 10 W power requirement

This small yet powerful device has its disadvantages. Most libraries, frameworks and software support

for Intel x86 CPUs is very good. However, that is not true for ARM processors, mostly because they are not

as widely used. Thus, the framework choices became limited, and the model was implemented in PyTorch

because support for the TX1 was available readily in older versions of PyTorch.

39



Table 6.1: ENet Architecture [47]. Output sizes are given for an example input of 512 × 512

Name Type Output Size

initial 16× 256× 256

bottleneck1.0 downsampling 64× 128× 128
4×bottleneck1.x 64× 128× 128

bottleneck2.0 downsampling 128× 64× 64
bottleneck2.1 128× 64× 64
bottleneck2.2 dilated 2 128× 64× 64
bottleneck2.3 asymmetric 5 128× 64× 64
bottleneck2.4 dilated 4 128× 64× 64
bottleneck2.5 128× 64× 64
bottleneck2.6 dilated 8 128× 64× 64
bottleneck2.7 asymmetric 5 128× 64× 64
bottleneck2.8 dilated 16 128× 64× 64

Repeat section 2, without bottleneck2.0

bottleneck4.0 upsampling 64× 128× 128
bottleneck4.1 64× 128× 128
bottleneck4.2 64× 128× 128

bottleneck5.0 upsampling 16× 256× 256
bottleneck5.1 16× 256× 256

fullconv C × 512× 512

Figure 6.8: Results of ENet trained with Cityscapes dataset on VNIT campus images with green overlay

representing the detected road pixels.
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Chapter 7

360° Vision using Catadioptric Camera Setup

7.1 Overview

7.1.1 Need of 360° Vision in Autonomous Vehicle.
Building reliable vision capabilities for self-driving cars has been a major development hurdle. By combin-

ing a variety of sensors, however, developers have been able to create a detection system that can recognize

a vehicle’s environment even better than human eyesight.

From photos to videos, cameras are the most accurate way to create a visual representation of the world,

especially when it comes to autonomous vehicles.

Autonomous vehicles have to rely on cameras placed on every side - front, rear, left and right to stitch

together a 360-degree view of their environment. Some have a wide �eld of view as much as 120 degrees

and a shorter range. Others focus on a more narrow view to provide long-range visuals.

7.1.2 Catadioptric System
Catadioptric systems are those which make use of both lenses and mirrors for image formation. This

contrast’s with catoptric systems which use only mirrors and dioptric systems which use only lenses.

Panoramic images can be created from conventional catadioptric cameras. Ideal omnidirectional cata-

dioptric cameras can provide images covering the whole view space.

7.2 Literature Review

7.2.1 Cameras with a Single Lens
"Fish-eye" lenses provide a wide angle of view and can directly be used for panoramic imaging. A panoramic

imaging system using a �sheye lens was described by Hall et al. in [53]. A di�erent example of an imaging

system using a wide-angle lens was presented in [54] where the panoramic camera was used to �nd targets

in the scene. Fleck [55] and Base et al. [56] studied imaging models of �sheye lenses suitable for panoramic

imaging.

7.2.2 Cameras with Single Mirror
In 1970, Charles [57] designed a mirror system for a single-lens re�ex camera. Various approaches on

how to get panoramic images using di�erent types of mirrors were described by Hamit [58]. Gregus [59]

proposed a special lens to get a cylindrical projection directly without any image transformation. Chahl

and Srinivasaan [60] designed a convex mirror to optimize the quality of imaging. they derived the family

of surfaces which preserve the linear relationship between the angle of incidence of light onto the surface

and the angle of re�ection into the conventional cameras.
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Figure 7.1: Experimental implementation of the global imaging system. A, Three surfaces produced by

turning aluminum on a CNC lathe. The mirrored �nish was achieved by polishing with a metal polish

of various grades. B, Assembled device enclosed in a glass tube for rigidity and to protect against dust.

Internal re�ection did not appear to be a major problem. C, Image produced by the device. The �eld of

view is approximately 240°. D, Image that resulted from unwarping the image, C. by Chahl et. al. in [60]

Figure 7.2: Side view of the �ve Catadioptric con�gurations examined by Mark Ollis et. al. [61] in (1) and

(2) using two cameras. (3), (4) and (5) useing a single camera.

7.3 Proposed Omnivision (Catadioptric) Camera Setup

7.3.1 System Model
The proposed setup is given in Figure 7.4. The Pinhole camera model shown in the �gure is used to focus

and capture the re�ected incoming light �ux by an axially symmetric curved mirror at the bottom. The

optical focus of the pinhole camera is de�ned as the primary (10) focus of the system and the converging

point of the extended incoming light �ux is estimated as secondary (20) focus of the system.

Figure 7.5 shows the performance of the proposed setup under the curved mirror typologies of three

types of curvature conditions and the convention used for (1) Incoming Light Flux, (2) Extended Light Flux

and (3) Converging Light Flux.

7.3.2 General Cylindrical Projection of the Image
Considering the re�ected �ux makes and image on the plane shown in Figure 7.4 with respect to secondary

focus, the curved mirror image to rectangular cylindrical projected image transformation equations is given

by:
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Figure 7.3: 3D view of reconstructed terrain using con�guration 1. 3D points are integrated into a regularly

spaced grid of height values.Raw terrain map & Interpolated terrain map, using (a) con�guration 1, (b)

con�guration 1, (c) con�guration 1,(d) con�guration 4 & 5, by Mark Ollis et. al. [61]

Figure 7.4: Pinhole Camera Model and Proposed Omnivision (Catadioptric) Camera Setup

f ′(x) = − tan θ, α− θ = Φ + θ

i.e.φ = α− 2θ, tanα =
H − f(x)

x

tanφ =
A+B

1−A.B
, A =

H − f(x)

x
, B = 2.

f ′(x)

1− f ′(x)2

h = f(x) + (r − x).
(1− f ′(x)2).(H − f(x)) + 2.x.f ′(x)

x.(1− f ′(x)2)− 2.f ′(x).(H − f(x))
(7.3.1)

7.3.3 Suitable Shape for the curved Mirror
Based on the equation 7.3.1, the curved shape of the mirror is constrained due to certain conditions given

by (a) The incoming �ux lines should not intersect outside the mirror in order to have unique mapping on

the rectangular frame, and (b) Extended �ux lines must converge at the point inside the mirror to obtain

the secondary focus of the system.

Hence by considering the above conditions;

According to condition (a),

for, α1 > α2, φ1 > φ2 , i.e. x2 > x1
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Figure 7.5: Light �ux in di�erent curved mirror typologies depending upon surface curvature.

Figure 7.6: Suitable mirror shape derivation.

As shown in the Fig. 7.6, let φc be the critical angle of re�ection,

φ > φc ∴ tanφ > tanφc, φc, φ ∈ (−π/2, π/2)

tanφc =
f(x)− f(x− δ)

δ

f(x)− f(x− δ)
δ

= tanφc1 ≤ tanφ1

f(x+ δ) + f(x)

δ
= tanφc2 ≤ tanφ2

but, tanφ1 > tanφ2

∴
f(x)− f(x− δ)

δ
>
f(x+ δ) + f(x)

δ

for small δ.

f(x) >
f(x+ δ) + f(x− δ)

2
f ′(x1) > f ′(x2) ∀ x2 > x1
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if the function f is monotonically decreasing,

f ′(x2) ≤ f ′(x1) ∀ x2 > x1 f ′(x1) , f ′(x2) < 0

Hence, the curve function of the required shape of the mirror must be convex up.

7.4 Analysis Over Curved Surface Topologies
From the mathematical analysis discussed in the previous section, we developed the mathematical model

for the system and compared the behavior of di�erent geometrical shapes (sphere, cone, and paraboloid)

under the set of parameters consisting of the height of the focus from the mirror center. The resultant plots

obtained in MATLAB are given in the �gure 7.7.

Figure 7.7: Light �ux plots of (a) Spherical Mirror, (b) Paraboloid Mirror, (c) Conical Mirror with parameters

mentioned.

As shown in the �gure 7.7 the location secondary focus formed by Spherical and Paraboloid mirror is

independent of the height H. But in the conical mirror secondary focus tends to go inside the mirror as

height decreases. Also, the �eld of view in the conical mirror is ranged in the lower part parallel to the

horizontal whereas in spherical and paraboloid it is located perpendicular to the horizontal reference.

Similarly, the conical mirrors with di�erent slopes of the cross-section and height ’H’ are studied.

7.5 Simulation Results
Based on an analysis of the di�erent curved mirror surfaces and conical mirrors, we developed CAD design

of the conical mirror with suitable dimensions and other objects in surrounding using SolidWorks software.

The �gure shows the experimental setup and the rendered images taken from it.

Further, Cylindrical Projection is taken using equations mentioned in Subsection 7.3.2. The �nal results

are shown in Figure 7.10.
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Figure 7.8: Light �ux plots of Conical mirrors with cross section slope (a) = 1, (b) > 1, (c) <1.

7.6 Conclusion
The advantages of panoramic imaging with catadioptric setup are:

1. Increased area coverage with single (or two) cameras.

2. Simultaneous imaging of multiple targets.

3. Instantaneous full-horizon detection.

4. easier integration of various applications required for Autonomous Vehicles.

The proposed catadioptric system is economic over the present technologies providing the same infor-

mation. The simplistic and static approach solves the problem more optimistically and economically. This

idea has been discontinued for practical hardware implementation in this thesis since the manufacture

of the conical re�ector is too di�cult for us to get a reliable re�ector without distortions on the surface.

Whereas, it will be very expensive if outsourced (or must be manufactured in bulk).
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Figure 7.9: Experimental Setup and Captured Images from Conical Mirror.

Figure 7.10: Cylindrical Projection of images given in Figure 7.9
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Chapter 8

Camera Lidar System Calibration

8.1 Overview

8.1.1 Camera Calibration
Camera Calibration also known as Camera Resectioning is the process of estimating internal parameters

(also known as intrinsics) and external parameters (also known as extrinsics) of a camera. Internal param-

eter comprises of focal length, principal point, skew (if present), aspect ratio and lens distortions. External

parameters comprises of 6 degrees of freedom associated with the camera in any arbitary coordinate sys-

tem. In order to derive 3D (metric) information from a camera, calibration is an essential step. It allows

photogrammetric measurements from images, distortion correction, 3D reconstruction, etc.

8.1.2 LIDAR Calibration
LIDAR stands for LIght Detection and Ranging. It is a device which provides accurate range measurements.

It could be used in tasks such as localization, odometry, etc. In this project we are using a 2D LIDAR named

YDLIDAR. It generates a planar point cloud of the scene. In order to fuse the information of LIDAR point

cloud with the camera images, it is essential to register the devices together. By register, we mean to

compute the transformation matrix between the Camera and a LIDAR.

8.2 Pin Hole Camera Model
In order to mathematically model digital cameras used in this project, it is important to gain understanding

of a simple pinhole camera. A pinhole camera, unlike other cameras, do not have any lenses or mirrors,

but just an aperture for light rays to enter and a �lm to capture the light. It is shown in Fig. 8.1.

The image obtained from pin-hole camera is inverted and is projection of 3D world object onto a camera

�lm. The size of the projected image is dependent on the distance of object from pin-hole as well as the

distance of pin-hole from the camera �lm (also referred as focal length).

The relationship between the 3D object and its 2D image for a pin-hole camera from Fig. 8.1 can be

expressed as :

y

−f
=
Y

Z
or y = −f ∗ Y

Z
(8.2.1)

Similarly,

x

−f
=
X

Z
or x = −f ∗ X

Z
(8.2.2)

Negative sign in the equations indicates that the images are inverted.

8.2.1 Extending pin-hole camera model to digital cameras
The pin-hole model can be extended to cameras by making few changes : -

• The origin of image lies on the top left corner, so we must shift the projected coordinates with (cx, cy),

which represents the projection of camera center on the image plane plane
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Figure 8.1: Pinhole camera

• In order to keep the equations 2.2.1 and 2.2.2 positive, we have assumed a virtual screen in front of

the camera, thus eliminating the negative signs.

• The image recorded is not continuous but discretized by the image sensor into numerous pixels. Each

pixel should ideally be square. However, it deviates from a square, in terms of aspect ratio and skew.

• After accounting all the parameters, the new transformation from camera coordinate system to image

in homogeneous coordinates can be written as follows :

λ

uv
1

 =

fx s cx
0 fy cy
0 0 1

XY
Z

 (8.2.3)

In the above equation 2.2.3, λ is equal to Z, which is the distance of the world point from the principal

point.

• The X,Y, Z in the equation 2.2.3, is expressed in camera coordinate system, in order to generalize

it to any arbitrary Cartesian system we may introduce a Transformation Matrix T , from arbitrary

coordinate system to camera coordinate system, thereby modifying equation 2.2.3 as :

λ

uv
1

 =

fx s cx
0 fy cy
0 0 1

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz

XY
Z

 (8.2.4)

The �rst three columns of transformation matrix constitutes a rotation matrix and the last column is

the translation vector.

• The pinhole model deviates as we move farther away from the image center, this e�ect can be ac-

counted using polynomial model of distortion. We can also incorporate tangential distortions if

necessary.
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8.3 Zhang’s Method of Camera Calibration
In order to calibrate our camera, we have used Zhang’s method of camera calibration. This method requires

us to capture images of an asymmetric checker board in di�erent orientations and positions. The output

of this method is a set of camera parameters:

• The intrinsic parameters like:

– principal point (cx, cy)

– focal length in pixels (fx, fy)

– skew s (if present)

– distortion coe�cients

• The extrinsic parameters like:

– The orientations of checkerboard w.r.t camera-coordinate system in di�erent images

– The positions of checkerboard w.r.t camera-coordinate system in di�erent images

This information will be used in further processing.

8.4 Camera LIDAR Extrinsic Calibration
In order to extrinsically calibrate LIDAR, we have implemented the algorithm presented in ??. This method

requires us to capture images as well as the point clouds of the scene in which checker-board is placed. The

orientation of checkerboard is changed after every capture. Once the capture is completed, we manually

segment the points from every point-cloud of LIDAR that belongs to checker-board. Then we calibrate the

camera from the images which were captured using Zhang’s method described in Section 2.3. For every

pose of checkerboard we compute the normal N in camera cordinate system using the equation:

N = −R3(RT
3 .t) (8.4.1)

Here,R3 represents the third column of rotation matrix from equation 2.2.4 and t represents the translation

vector. The equation of the checkerboard plane can then be written as

N.x = ‖N‖2 (8.4.2)

Here, x denotes the points lying on the plane, in camera system. Now lets assume that the transformation

between the points in camera and lidar is represented as : -

Pl = φPc + δ or Pc = φ−1(Pl − δ) (8.4.3)

Here, Pl represents the point in Lidar system and Pc in Camera System. φ is the rotation matrix and δ is

translation vector between them. Substituting equation 2.4.3 in 2.4.2, we get

N.φ−1(Pl − δ) = ‖N‖2 (8.4.4)

Equation 2.4.4 can further be simpli�ed as :

N.HPl = ‖N‖2 (8.4.5)

Where,

H = φ−1

1 0 −δx
1 0 −δy
1 0 −δz

 (8.4.6)

We can solve for H with every pose with multiple LIDAR points linearly using least squares.

After determining H = [H1, H2, H3], φ and δ can be computed as

φ = [H1,−H1 ×H2, H2]T (8.4.7)

δ = −φ.H3 (8.4.8)

The solution obtained can then be re�ned by non-linear optimization using Levenberg-Marquardt algo-

rithm.
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Chapter 9

Conclusion and Future Work

9.1 Conclusion
In this thesis, the construction of the prototype and the tasks of perception, mapping, localization and

planning for the Autonomous Delivery Robot are demonstrated. We have implemented and tested the

various modules required in an autonomous robot operating in open environments. The issues faced in

design and operation of the robot in outdoor environments have been discussed in detail in this thesis.

We aimed to create a completely autonomous robotic system, robust enough to operate smoothly on roads

with proper localization and planning. This would solve the problem of robots being manually controlled

by a human operator and help in carrying out tasks for humans to make their lives easier.

Although the purpose of the robot in this thesis is aligned towards a delivery robot, the pipeline ex-

plained in the thesis can be used for any robots operating autonomously in an outdoor environment. For

example, the presented system can also play a signi�cant role in medical assistance applications such as

in the current COVID-19 pandemic situation, autonomous food and medicine delivery as well as sample

collection in critical areas.

9.2 Future Work
This thesis demonstrates an end-to-end pipeline for an autonomous robot operating in an outdoor envi-

ronment. The current prototype is centered on the software portion and theory implementation rather

than the actual functionality of the delivery vehicle. Therefore, in the future, the hardware will be more

focused on delivery vehicle aspects such as e�ective human-machine interface as well as the dashboard,

distant monitoring system and sound fail-safe management, long run time, and the larger payload capacity.

However, highly complex situations were avoided while testing. The outdoor environment is highly un-

predictable due to dynamic obstacles such as pedestrians, animals, vehicles, etc. Further research could be

carried out to develop highly optimized and robust planning algorithms to overcome the mentioned issues

in an e�cient manner. The robot could be made more robust to operate in di�erent weather conditions like

rain, snow, etc. and on uneven road terrains. The future work can include developing e�cient algorithms

or choose appropriate sensors to tackle the issues faced in localization of the robot in outdoor environment

as explained in Chapter 4. Instead of using a single channel Lidar for localization, a multi-channel Lidar

could be used to provide a well de�ned 3D point cloud. The map can be re�ned using additional layers

as mentioned in the literature review to construct a precise 3D map of the environment containing very

useful information. The autonomous robot and the underlying algorithms explained in this thesis can be

used as a base platform to conduct further research in each independent module.
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